Assignment 9

The Cauchy problem for a single equation is given by

$$y' = f(x, y), \quad y(x_0) = y_0,$$
 (1)

where $f \in C(R)$ satisfies the Lipschitz condition in some rectangle R and (x_0, y_0) belongs to the interior of R.

- 1. Show that the solution to (1) belongs to C^{k+1} (as long as it exists) provided $f \in C^k(R)$ for $k \ge 1$. In particular, $y \in C^{\infty}$ provided $f \in C^{\infty}(R)$.
- 2. In our proof of Picard-Lindelöf theorem it was shown that the solution of (1) exists on $[x_0 a', x_0 + a']$ where $0 < a' < \min\{a, b/M, 1/L^*\}$. Prove that in fact the solution exists in $0 < a' < \min\{a, b/M\}$, that is, the Lipschitz condition is not involved.
- 3. Let $f \in C^1(G)$ where G is open in \mathbb{R}^2 . Show that f satisfies the Lipschitz condition on every compact subset of G. Suggestion: Argue by contradiction. If not, $\exists (y_n, z_n) \to (y_0, z_0) \in K$ such that $|f(x, y_n) f(x, z_n)| \ge n|y_n z_n|$ so $y_0 = z_0$, etc.
- 4. Find the maximal interval of existence for the following Cauchy problem. Specify G first.

$$f_1(x,y) = \frac{1}{xy}, \quad y(1) = 1,$$

(b)

$$f_2(x,y) = y + e^x \sin x, \quad y(0) = -2,$$

(c)

$$f_3(x,y) = y^a$$
 $(0 < a < 1, a > 1), y(1) = 1,$

(d)

$$f_4(x,y) = \sin \frac{1}{1-y+x}, \quad x_0 = y_0 = 0.$$

- 5. Consider the Cauchy problem for $f(x, y) = \alpha y(M y), \ \alpha, M > 0.$
 - (a) Find the maximal interval of solution corresponding to the initial data y(0) = a as a varies over $(-\infty, \infty)$.
 - (b) In this logistic model y(x) gives the population of some species at time x. Show that $y(x) \to M$ whenever y(0) > 0. In other words, $y(x) \equiv M$ is a stable equilibrium state for this model and the other steady state $y(x) \equiv 0$ is unstable.
- 6. A comparison principle. Let y_1 and y_2 satisfy the differential inequalities

$$y'_1 \le f_1(x, y_1)$$
, and $y'_2 \ge f_2(x, y_2)$,

respectively with initial data $y_i(x_0) = y_{0i}$, i = 1, 2. Show that $y_1(x) < y_2(x)$, $x \ge x_0$, as long as they exist provided $y_{01} < y_{02}$, $f_1(x, y) \le f_2(x, y)$ for all x, y and $f_2(\cdot, y)$ is strictly increasing in y. Here $f_1, f_2 \in C(R)$.

7. (a) Show that the Cauchy problem

$$y' = 1 + |y|^{\gamma}, \ y(x_0) = y_0, \ \gamma > 1,$$

cannot have a global solution, that is, a solution in \mathbb{R} .

(b) Show that the Cauchy problem

$$y' = g(x, y), \ y(x_0) = y_0 > 0,$$

where $g \in C^1(\mathbb{R}^2)$ has a local but not a global solution if

$$g(x,y) \ge y^{\gamma}, \quad \forall y > 0,$$

where $\gamma > 1$.

8. Let $f \in C(\mathbb{R}^2)$ which satisfies the Lipschitz condition on every compact rectangle and

$$|f(x,y)| \le C(1+|y|), \quad (x,y) \in \mathbb{R}^2,$$

for some constant C. Show that (1) admits a global solution in $(-\infty, \infty)$. Hint: Use comparison principle.

- 9. Optional. Continuous dependence on initial data. We may consider the unique solution y as a function of both x and y_0 while x_0 remains fixed.
 - (a) Show that the map $y_0 \mapsto y(x, y_0)$ is continuous for fixed x.
 - (b) Show that further when $f \in C^1(R)$, this map is continuously differential near y_0 for fixed x. Hint: Let z be the solution to the linear Cauchy problem

$$z' = \frac{\partial f}{\partial y}(x, y(x, y_0))z, \quad z(x_0) = 1,$$

where $y(x, y_0)$ denotes the solution of (1). Show that

$$\lim_{h \to 0} \frac{y(x, y_0 + h) - y(x, y_0)}{h} = z(x).$$

Use the fact that the function $q(x) \equiv \frac{y(x, y_0 + h) - y(x, y_0)}{h}$ satisfies a linear equation of the form

$$q' = \frac{\partial f}{\partial y}(x, y(x, y_0))q + b(x),$$

where b is small in some sense.

10. Show that there exists a unique solution h to the integral equation

$$h(x) = 1 + \frac{1}{\pi} \int_{-1}^{1} \frac{1}{1 + (x - y)^2} h(y) dy,$$

in C[-1, 1]. Also show that h is non-negative.